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ON T H E  O S C I L L A T I O N S  NEAR AND A T  R E S O N A N C E  IN O P E N  P I P E S  

L . v a n  W i j n g a a r d e n  

(Twente Institute of Technology, gnschede,  The Netherlands) 

SUMMARY 

This paper is concerned with resonance oscillations occurring when a piston executes small oscillations on 

one end of a pipe which is open to the atmosphere at the other end. According to linear theory very large 

amplitudes of pressure and velocity oscillations in the gas in the pipe result when the piston is oscillated 

with an angular frequency near ~ao/2L , where a o is the sound velocity of the gas and L the length of the 

pipe. In tile theory of resonators, due to Helmholtz and Rayleigh and discussed in section I ,  radiation from 

the open end is taken into account. Then resonance occurs at a frequency slightly below ~Oo, and amplitudes 
are still very large, as is shown in section I. Therefore a nonlinear theory is developed here, analogous to 

previous work on resonance oscillations in closed pipes. In section 2 the boundary conditions at the open end 
are formulated based on the fact that the reservoitconditions are constant at inflow but vary at outflow, since 

the gas issues as a jet. This difference results in a net efflux of energy to be balanced by the work done 
by the piston. In sections 3-q a perturbation theory is developed in terms of the characteristics of motion. 
The pertinent perturbation parameter is suggested by the energy balance.  An ordinary differential equation 
for the first order perturbation in the quasi-steady state is obtained in section 7. In section 8 experimental  
results are presented together with results obtained from numerical  integration of the above mentioned equation. 
The results, showing a satisfactory agreement,  indicate that further experimental  investigation on the con-  
ditions at the open end are needed.  

i. Introduction. 

X-O 

air 
x-L 

Figure h Open pipe with oscillating, piston at one end. 

A circular pipe with cross section ~rR 2 and length L is open to the atmosphere 
at x = 0 (see figure i). At x = L a piston executes harmonic oscillations 
with amplitude 6 and angular frequency to. When 5/L is very small acoustic 
theory may be used to find the disturbance velocity u and the disturbance 
pressure p -Po due to a piston displacement 5 cos tot. The result is, 
(see e.g. (i)), 

tox 
u = - to6 sin wt cos ,, 

ao 

coL (1 i)  COS 
a o  

P - Po 6to wx 
Po ~,ao  c o s  wt s in  ao 

wL 
c o s  (i. 2) 

ao 

a is the sound velocity in the air and T the ratio between specific heats. 
~hen to attains the value 
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a o  

~o = 2 L (i. 3) 

(i. i)and (i. 2) yield infinite values. The reason for this is that whereas 
for to <t0 o and m > t0o u and p - Po are 90 ~ and - 90 ~ out of phase at the 
piston, they are in phase at ~ = ~0 o. The piston therefore does a nonzero 
amount of work on the gas. Since this is not balanced by any energy 
consuming mechanism, amplitudes continue to grow. This is contrary to 
observation. In the classical theory of resonators due to Helmholtz and 
Rayleigh, deseribedin the latter's "The Theory of Sound ''(I), this problem is 
solved by invoking mechanisms which are negligible in a linear theory. 

The mechanism which keeps amplitudes finite at resonance is in Rayleigh's 
theory the radiation of energy from the open end. At some distance this 
may be considered as the site of a source of strenght ~R 2u. On the basis of 
acoustical theory the velocity potential is accordingly 

R 2 u  ( t  - r/ao) 

4r 

a~ 
At values of r, such that R << r << L, the velocity 

R2fl (t - r / a  o) a._!= 
8 r  r a o 

The mean value of the radiated energy E is 

p ao/(~) 2 ds, 

is 

(1.4) 

where the integration is over a sphere of radius r. 
Hence 

p R4 ~2~2 
E , ~ being the amplitude of u. 

a o 

The mean work done by the piston is with a piston velocity ~05 and a dis- 
turbance pressure pou/a o, of the order po~o6~/a o. 
Making use of (I. 3) and 

dp] = TP? = ao2 
o ~o " ( 1 . 5 )  

we obtain from the energy balance 

o(RL~) 2 
~'7 = �9 (i. 6) 

In this way finite, though still very large, amplitudes are obtained, In 
fact the amplitudes of velocity and pressure as predicted by this classical 
theory are many times larger than actually measured. With (R/L) 2 of 
order 6/L it follows from (1.6) and (1.3) that in air velocities of several 
hunderds m/s can be expected. In practice they are of order i m/s, which 
is stillvery large with respect to the velocities at off resonance frequencies, 
which are with 5 = 0(10-3m) and L = 0(ira) typically of order of cm/sec. 
With this in mind the resonance phenomenon is treated in this paper as a 
nonlinear one, using the method of characteristics. This has been a success- 
ful approach in the case of resonance in closed pipes. It has been shown both 
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theoretically and experimentally that in that case, and in the analogous case 
of oscillations of fluid with a free surface in a container, shock waves (Chu 
and Ying (2)) resp. hydraulic jumps (Verhagen and Van Wijngaarden (3)) are 
formed. The dissipation in these discontinuities is balanced by the work 
done by the piston and this balance determines the amplitude of the oscill- 
ations. Before proceeding we have to conceive an idea how such a balance 
is obtained in the case of open pipes. 

2. The energy balande fo r  open pipes at resonance; conditions at open end. 

The o c c u r r e n c e  of s h o c k  w a v e s  of a p p r e c i a b l e  s t r e n g t h  is e x c l u d e d  by the 
p r e s e n c e  of the open  end. T h e y  a r e  not  o b s e r v e d  in e x p e r i m e n t s .  So 
h e r e  c e a s e s  the a n a l o g y  with the c l o s e d  pipe.  C o n s i d e r  the ex i t  of the tube.  
( f igu re  2) 

When air is sucked in the pipe the motion 
in the surrounding air is-as if a sink was 

/ "  l o c a t e d  at the m o u t h  of the p ipe ,  

\ 
Figure 2: Motion at open end, when air 

is sucked in the pipe. 

In the c l a s s i c a l  t h e o r y  the s a m e  type of f low, with r e v e r s e d  s ign  of 
a r r o w s ,  is a s s u m e d  when a i r  is f lowing  out.  The v e l o c i t y  p o t e n t i a l  i s  found 
by m a t c h i n g  the v e l o c i t y  f r o m  a p o t e n t i a l  of the type (1 .4 )  wi th  the v e l o c i t y  
in the p ipe .  With  an i n v i s c i d  f luid  this  is a r e a s o n a b l e  p i c t u r e  of the f low. 
A r e a l  f luid  h o w e v e r  i s s u e s  f r o m  the pipe as a j e t  of n e a r l y  c i r c u l a r  f o r m  
( f igu re  3). The p r e s s u r e  in the je t  is v e r y  n e a r l y  equa l  to a m b i e n t  p r e s s u r e .  

The d i f f e r e n c e  b e t w e e n  ou t -  and inf low is 
tha t  d u r i n g  inf low the r e s e r v o i r p r e s s u r e  is 
c o n s t a n t ,  w h e r e a s  th is  v a r i e s  d u r i n g  ou t -  

_ /0=/6o flow, the m e a n  va lue  be ing  of orc ler  Oo~ 2 
a b o v e a m b i e n t p r e s s u r e  T h i s  m e a n s  that  a 
net  a m o u n t  of e n e r g y  of o r d e r  po~a leaves  the 

Figure 3: Motionat open end whenair is issuing. 

pipe p e r  uni t  t i m e .  E q u a t i n g  to the a m o u n t  of w o r k  d e l i v e r e d  by the p i s t o n  
y i e l d s  

po ~ _3 
po u ~ ~6, a ~ (2. 1) 

or  

~___ • l 
: 0( )2(ao%L)~. (2.2) 

W i t h ( f ~ / L )  2= 0 ( a / L )  this  is (ef  1 . 6 ) s m a l l e r  by a f a c t o r  of o r d e r  ( a / L )  �89 
t h ~  the v e l o c i t y  fo l lowing  f r o m  the b a l a n c e  b e t w e e n  r a d i a t e d  e n e r g y  and 
w o r k  done by the p i s ton .  

Next  we f o r m u l a t e  the b o u n d a r y  c o n d i t i o n s  at  x = 0 on the b a s i s  of the 
above  g iven  f low p i c t u r e .  
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First we discuss the conditions at inflow, 
Ue > 0. The flow will be as sketched in 

~_ figure 4. 

i_ 

I" 

12. 

e 

Figure 4: Sketch of flow at inlet of the 
pipe when air is coming in. 

D u e  to the  s h a r p  e d g e s  t h e r e  i s  s e p a r a t i o n  of  the  f l o w  w i t h  a s s o c i a t e d  
e d d y  f o r m a t i o n .  A f t e r  c o n t r a c t i n g  the  f l o w  o c c u p i e s  the  w h o l e  c r o s s  s e c t i o n  
a t  s t a t i o n  e .  F o r  o u r  p u r p o s e  we  a s s u m e  tha t  t h i s  c o i n c i d e s  w i t h  x = 0, 
t h a t  i s  to  s a y ,  we  s h a l l  n e g l e c t  the  d i f f e r e n c e  b e t w e e n  x = 0 and the  a c t u a l  
l o c a t i o n  of  e .  

T o  o b t a i n  a r e l a t i o n  at  x = 0 b e t w e e n  u e an d  Pe a m o m e n t u m  c o n -  
s i d e r a t i o n  i s  m o s t  c o n v e n i e n t .  C o n s i d e r  a c o n t r o l  s u r f a c e  a s  in  f i g u r e  5. 

z ., 

i/ k 
/' \\ 

I 
I i 

I 
c .............. l ! 
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/ 
! 

"k // 
xx / 

x z 

Figure 5: Controle volume for which momentum conservation is formulated. 

Conservation of momentum in x direction yields 

+ 2 + p u .  i d V  = Po,  (2.3) 

where i is a unit vector in x-direction. The integral can by making use 
of a velocity potential, defined by u = Ar be written as 

8-~ Ou i d V  = ~ pC d $ . i  ~ ~-~ r - ~  d V .  ( 2 . 4 )  

The first integral can be interpreted as the external mass of air to be acceler- 
ated when the piston oscillates. The second integral is associated wlth radiated 
wave momentum. For our present purposes we neglect the radiation, being 
of negligible order of magnitude. The motion within the control volume is 
as if a sink of strength ~-R2Ue was located at the centre of the mouth, so 
r m a y  b e  Y c r i t t e n  a s  

R 2 U e  

r ~ 4 r  ( 2 . 5 }  
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Due  to s y m m e t r y ,  the  s u r f a c e  of the  l a r g e  s p h e r e  d o e s  n o t  c o n t r i b u t e  to 
the  s u r f a c e  i n t e g r a l  i n  ( 2 . 4 ) .  T h e  o n l y  c o n t r i b u t i o n  s t e m s  f r o m  the  c r o s s  
s e c t i o n  of the  p i p e  e x i t  a n d  i s  

cTrR $ 0 
2 Dt (PeUe) '  

where c is a constant of unit order. 
Introducing this in (2.5) yields 

cR" ~ (PeUe) = u e 0. ( 2 . 6 )  Pe + PeUe + 2 Ot Po, 

The precise determination of c would require the solution of a rather 
difficult boundary value problem. We can however avoid this by recognizing 
that eventually the instationary term in (2. 6) determines the "virtual" or 
extra mass of air to be accelerated by the piston. Its effect is as if the 
pipe were connected with an environment of zero mass but were larger 
with an amount AL. The value of AL for resonators is discussed at length 
in ref. 1 and we shall in numerical calculations assume such a value for 
c that the extra length AL is in agreement with measurements reported in 
ref. i. 

Whereas (2.6) holds when air is flowing into the pipe, we have at outflow 
simply 

Pe = Po,  Ue < O. (2. 7) 

We conclude this section by noting that Rayleigh himself has envisagedthe 
jet formation at outflow. In section 322 of reference 1 he writes: "It is 
clear that, if the formation of jets took place to any considerable extent 
during the passage of air through the mouths of resonators our calculations 
os pitch would have to be seriously modified". Later in the same section 
he concludes by assuming jet formation as unlikely because "the near agree- 
ment between the observed and the calculated pitch is almost a sufficient 
proof of this". We shall see that the occurrence of jets at the outflow does 
not affect the pitchof the resonator, but only the amplitude of the oscillations, 
a quantity difficult to measure in Rayleigh's time. 

3, Calculation of the nonlinear oscillations. 

The configuration being as in figure i, the motion is with the symbols used 
in the preceding sections described by 

+ (u + a) ~-~} u + 2a 
-- --~-i = O, (3.1) 

since due to the neglect of the effects of viscosity and heat conduction the 
gas motion is isentropic. 

Because a perturbation method in the physical, or x-t, plane starting 
with the linear approximation in which u = 0 and a = ao leads to singular 
behaviour at resonance we attempt following earlier work (reference 4) a 
perturbation in the characteristic plane, the characteristics ~ and ~ being 
given by (from 3, I) 

~---= (u + a) 

: ( 3 . 3 }  
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Along the fi characteristics given by (3. 2) 

O..~_u =_ 2 8 a  
8c~ %'-1 aa"  

w h e r e a s  along the ~ characteristics given by (3 3) 

0u _ 2 8a 
a~ ~ - 1  o8 

(3.4) 

(3.5) 

We label the ~ characteristics with the value of t 
at the intersection with the line x = 0 (see figure 6), 
the ~ characteristics with the value of a at this in- 
tersection. Hence 

,~ = /3 at  x = 0 ( 3 . 6 )  

= t a t  x = 0 ( 3 .  7 )  

Figure 6: x, t plane with charac-  

teristics a and B. 

We expand u, a, x and t in terms* of the small quantity 

c = (~) �89 ( 3 . 8 )  

w h i e h  i s  s u g g e s t e d  b y  the  e n e r g y  c o n s i d e r a t i o n s  in  s e c t i o n  2. ( c f .  2 . 2 )  
S o  we have 

u = cu  1 ( ~ , ~ )  + c~u 2 C~,~) + . . . . . .  

a = a c + ( a l ( ~ , ~ )  + ~ 2 a 2 ( a , ~ )  + . . . . . .  

x = Xo + c x  1 ( ~ , ~ )  + c2x2  C~,~)  + . . . . . .  

t = to + c t l  ( ~ , ~ )  + c2t2 ( a , ~ )  + . . . . . .  

(3.9) 

(3.10) 

(3.11) 

(3.12) 

The boundary conditions in the quasi-steady state are in terms of x and t 

t h a t  

u = -~ZwL sin wt at x = L + r cos tot (3.13) 

and the conditions (2.6) and (2.7) at x = 0. 
Introducing 

cR 
2L - o-6 (3.14) 

(2.6) can be written as 

2~ 2 

Ca__) r - 1  -1  = pu + o~L a 
p p at (#u), ao 

where use has been made of the isentropy to express P/Pc in terms of 

*' Pot the mathematical basis (convergence etc.) see Lin (4). 
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a / a n .  T h e  r i g h t  h a n d  s i d e  of  t h i s  e q u a t i o n  i s  o b v i o u s l y  o f  o r d e r  e 2. E x -  
p a n d i n g  the left hand side with help of (3. 10) shows that 

a 1 = 0 at  G = ~ ,  i f  u > 0. (3.  15) a 

U s i n g  t h i s  r e s u l t  we f i n d  u p o n  c o l l e c t i n g  t e r m s  of  o r d e r  c2: 

2a  2 Ul 2 (~L au t 

T---'-~ = an an 8 t  a t  9e = 8 ,  i f  u > 0. (3. 15) b 

E x p r e s s e d  in  t e r m s  of  a I a n d  a 2 the  c o n d i t i o n  (2. 7) i s  

a a = a 2 = 0 a t  o~ = ~ ,  i f  u < 0. ( 3 . 1 5 )  c 

T h e  p r o c e d u r e  n o w  i s  to i n s e r t  (3. 7) - (3. 12) in the  e q u a t i o n s  ( 3 . 2 )  - ( 3 . 5 )  
a n d  the  b o u n d a r y  c o n d i t i o n s  ( 3 . 6 ) ,  ( 3 . 7 ) ,  ( 3 . 1 3 )  and  ( 3 . 1 5 ) � 9  

4. Zeroth approximation. 

Collecting like orders of c gives in the lowest appr~oximation where only 
terms of order c ~ are retained: 

3 x  o a t  o Ox o Ot o 

with the boundary conditions: x o = O, to = ~ at ~ = 8- 
Integration yields 

a o 
Xo = -2- Ca-E), ( 4 . 1 )  

to "- �89 ( 4 . 2 )  

5. Firs t  approximation. 

In the next approximation terms of order ~I are retained. The equations 
are 

3 x  1 8 t  1 

~a = an ~-~ + (ul + al) ' (5 .1 )  

8x  1 8t  1 ~to 
3"-~ = a o ' ~  + (n l  - al) ~-~'  (5. 2) 

8u  1 2 8 a  1 

~ T-1  ~a ( 5 . 3 )  

a u  1 2 3 a 1 

at3 = T - i  a~ ( 5 . 4 )  

Both f o r  ( 3 . 1 5 )  a and (3.15) c a 1 = 0 a t  a = ~.  F u r t h e r  i t  f o l t o w s  f r o m  ( 3 . 6 )  
a n d  (3. 7) t h a t  t I = 0 a t  a ; 8 .  
H e n c e  
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q at ~ = ~3 (5,6) 

a 1 (5.7) 

Integrating (5. i) - (5.4) subjected to these conditions yields, A being a still 
undetermined function: 

ul = �89 ~A(o~) + A(~}}, ( 5 . 8 )  

- -  {A( I (5.9) al T 

{ }] x l  : ~ 0 , + z ) ( ~ - # )  A(#)  A(~)  , ( 5 . 1 o )  

B 

_ 1 [(3-T)f A(~)d~ + (#-~)~A(#) A(~)}] (5.11) t l  8ao - , 
(X 

The conditions (3.13) give us an important property of A. In the zeroth 
approximation the piston is according to (3, 13) and (4. i) located at 

= a-2L/a o. Here u I must, on account of (3. 13), be zero, whence from 
( 5 . 8 )  

A ( a )  + _A_(ot - 2__LL) = 0. ( 5 . 1 2 )  
a o 

This relation has a central rSle in the theory, expressing that A is a 
symmetrical periodic function of ~ with period 4L/a o. In the first approx- 
imation the piston position has to be corrected with u(o~), say, so that the 
piston is at ~ = ~ - 2L/a o + eu(a). The contribution of order r to x there 
is on account of (3. ii) and (5. i0) 

Ox o ( - y+ i ) L  

A ( ~ - ~ - - 0 -  ~ ) - A ( ~ )  ~'('~)~ + 8a ~ 

From (3. 13) it follows that this is zero. We obtain, using (4. i) and (5.12) 

u(~) - (T+I)L A(cz)~ so that in the first approximation the piston is at 
2ao 2 

/~ = a 2L e('Y+I)L A(~). (5.13) 

ao 2a 2 
O 

The interesting conclusion from this section is that a continuous oscillating 
function A(~) exists, and to fix ideas wo can on account of (5.8) identify 
A(~) with the first order velocity at the mouth of the pipe, which obeys all 
boundary conditions. 

Excepted for (5.12)A(a) is undeterminas in the first order approximation. 
We proceed therefore to the second order. 

6. Second approximation. 

We need only the equations for the Riemann invariants which are 

8u 2 2 aa 2 

(6.1) 
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8u 2 2 ~'a 2 

(6.2) 

Integration gives, introducing the functions B and B*, 

(6 .3 )  

(6.4) 

The boundary condition in (3.13)involves sin tot. _At this moment we have 
to express that we are concerned with frequencies near resonance and 
introduce, to o being given by (i. 3), 

to = too + eto 1 : 2 L-- + c toc  (6.5) 

The piston position is given by (5.13). The second order term of the 
velocity there is 

u2(a , a -  2L  (T+._.~ A(cQ 2L 
~oo ) - 2ao~ ~ - -  ~ - a - ~ .  

T h i s  e x p r e s s i o n  m u s t ,  f r o m  ( 3 . 1 3 ) ,  e q u a l - t o L  s i n  tot, w h i c h  i s  in  t h i s  
a p p r o x i m a t i o n ,  by  v i r t u e  o f  ( 4 . 2 ) ,  ( 6 . 5 )  a n d  ( 5 . 1 2 ) ,  the  s a m e  a s  t o o l  c o s  
~0or E q u a t i n g  b o t h  e x p r e s s i o n s  r e s u l t s  w i th  h e l p  o f  ( 5 . 8 ) ,  (5. 12),  a n d ( 5 . 1 3 )  
in 

l {  ~ } = %L cos %a. ~- B(a -  ) + B",-'(a) + ( ~ + I ) L  dA 
2~---/-j--o a -a-~ (6 .6 )  

Next the conditions (3.15) must be used. The change in sign of u is to 
order c 2 determined by the change in sign of u I. We shall therefore choose 
(3.15) b when u 1 (a,a) is positive and (3.15)c when Ul(~,a ) is negative. In 
the latter case a 2 = 0 and from (6.4) it follows that�9 since at ~ = ~3 ul(a,~) = 
n(a) (cf 5 s), 

B':-" = B for ~ such that A(a) *~ 0. 

For A(a,) > 0 (3.15) b yields with help of (5.8) 

(6.7) 

4a 2 2aL 
dA 2A 2 

7 - 1  ao da  a o 

w h e r e  we h a v e  u s e d  t h a t  at  a = ~, Ot d 
d~ 

In combination with (6.3) we obtain that 

2 a L  dA 2A 2 
B*  = B + + f o r  a s u c h  t h a t  A(a )  > 0 ( 6 . 8 )  

a o d a  a o  ' 

7. T h e  e q u a t i o n  f o r  A (a) . 

In th i s  s e c t i o n  we d e a l  wi th  the c r u c i a l  q u e s t i o n  h o w  to  o b t a i n  an  e q u a t i o n  
for the first order solution A(oz). It is worth while to note that the transition 
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from one boundary condition at x = 0 to another introduces discontinuities 
in the second order function B. The first order solution A(~) however is 
continuous. 

Consider some o! = o~ 1 such that A(Otl) > 0. For ~ = ~i (6.8) holds and 
substitution in (6.6) gives 

1 _ _  _ _  _ _  + 

a o a o dol c{ m C~l a o 

d~x  = 
+ (T+I)L A(~l ) (~.~a)_~ 1 tOoL c o s  Wo~ 1. 

2ao 2 - 
( 7 . 1 )  

Next we take ~ = ~1 - 2L/ao. By virtue of (5. 12) for this value of o4A is 
negative and (6. 7) applies. Substitution of (6. 7) in (6.6) gives with help of 
(5.12) 

2L([. (T+I)L dA _ 
4 L  ) + B ( ~  1 _ -~o 'J  T 2--~o2 A(~I  ) (_d_~_)a~_r _ ~o L c o s  wo~ 1. �89 B(%- a-T 

Subtracting this result from (7. i) gives 

A(~I)  2 
l { B ( a l )  B ( a l  - 4 L ) }  + c~L(~_~_ 

- ao -Go d~ ) ,=~+ ao - 2t0oL c o s  c0o~ 1. 

We could have started also with assuming A(ql) < 0. Then we arrive, as 
may easily be verified, at 

�89 - B(~ 1 - 4L)~ + o% d.A A(~I)2" - 2r cos r I. 
a o  ] -Go (h--~-)~=~ - ao 

Both  r e l a t i o n s  c a n  be t u r n e d  in the e q u a t i o n  

� 8 9  s { ~ -  4__L)]~ + ~ dA + AIAJ : 
a o J a o dot ao 2 woL c o s  r ( 7 .3 )  [ 

Finally we establish a relation between B(o~) and B(o~ - 4L/ao). Because all 
quantities have to be periodic with period 2=/w, we have at ~ = 

2= 
u(ot) = u (a  + ---~). ( 7 .4 )  

F u r t h e r  at  /3 = a 

u = c A + ~ 2 u  2. and--2~r =___2~ 2rct~ 
r o w r so that by virtue of (5. 12) (7.5) 

u( 2~) j - 2 ~  dA 4L)-~ (7.6) 
,,__~ -- (A(,,) + ~2 ]. ~ ~-E+ u2(~- aoJ" 

Using (6. 3), (6. 7), (6.8) and the periodic properties of A(a) expressed by 
(5. 12) we obtain from (7.4) - (7.6) 

B(a) - B(a- 4L) = 2=w I dA 
~o 2 a , ~  ( 7 . 7 )  
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Substituting of (7. 7) into (7. 3) gives the principal result of this investigation 

~ o  L "~'tol ( + , ) d_~ -~ , IA I  
to2 ~ + a o = 2~)oL c o s  ~oO~. 

o 

Introducing 

~- = toO ~ 

A = (tooLao) �89 A*, 

t h i s  m a y ,  w i t h  h e l p  of  (1.  3) be  w r i t t e n  a s  

( 7 . 8 )  

(7.9) 

(7. l O )  

~ -  + �89 A* = c o s  ( , 7 . 1 1 )  

A maximum of the amplitude of -~* occurs for to__! - to o 2 " According to ref. 

1 an estimate for the shift in frequency with respect to to ~ is given by 

AL R 
L = 0 . 6 T .  

By virtue of (i. 3) this corresponds with 
too - (O 
- - - 0 . 6  R 

toO ~' 

Then, remembering that to - ta = + eta I + ..., we have to obtain agreement 
to  p u t  o 

I~ E.I. (7.12) ~= 1.2~ 

(This, incidentally, yields the value 2,4 for c in (3. 14)). 
Equation (7.8) can not be integrated analytically, but is in the form (7. ii) 

suited for integration on an analog computer. Some conclusions can be directly 
drawn from (7.8). To fix ideas we note that at the piston where ~ = o~ - 
2L/a o + 0(r we have by virtue of (5. 9) and (5.12) 

a~ : v - i  _st(a) 
2 

Further, from the isentropic relation (i. 5), 

Po _ 27 r  0(c2), so that 
Po T- 1 a o 

a t  t he  p i s t o n  

P - Po 
_- _ v ~ A ( ~ )  + 0 ( ~ s ) .  

Po ao 

From (4. i), (4.2), (5. i0) and (5. ii) it follows that at the piston 

o< = t + - - L  + O ( c ) ,  
a o 

(7.13) 



2 3 6  

whence up till O(e 2) 

L) 
P - Po _ T e A ( t + a o  

Po a o  
i 

When 
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d o m i n a t e s  a n d ,  m a k i n g  u s e  o f  ( 1 . 3 ) ,  

( 7 . 1 4 )  

is sufficiently large the first term on the left hand side of (7.8) 

we obtain 

sin t o a  
.A - o 

o- to 1 
+ 

2 too 

Substitution in (7.14)gives with a = t + L = t + --~ 
a o 2to o 

P- Po 7 e 
- cos too t. 

19o tol (7 
+ ( 7 . 1 5 )  

co o 2 

Remembering that the piston displacement is 5 cos tot it follows that for 
frequencies well below (in terms of e) too the pressure is at the piston 
inphase with the displacement and at frequencies well above ~o in antiphase, 
The solution (7.15) has to match with the linear solution (I. 2), Indeed, 

evaluation of (I 2) in the neighbourhood of to L _ = gives 
�9 a o 2 

P - Po 

% 

C 

to I cos to o t, 

which indicates that the linear solution and nonlinear solution become 
identical far enough from resonance. 

Whereas linear theory predicts an infinite amplitude at t0 = wo, the result 
of the present theory is that resonance, that is to say maximum of the 
amplitude of oscillation, occurs at a frequency given by 

(01 (7 

to o 2 ' (7.16) 

with a pressure disturbance 

p-po r Po = T e ~ sin ~o t sgn (sin toot). (7. 17) 

This result follows from (7.8) by insertion of (7. i0) and by making use of 
(I. 3) and (7.14). 

At resonance there is a phase difference of ~-/2 between pressure at the 
piston and piston displacement. For those values of t for which sin too t = 0, 
dp 
~}-tends to infinite values. 
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This is an indication that the present theory has to be improved. Near 
these values of t A is very small and higher order effects may be of 
importance. We have neglected the difference between x = x e and x = 0 (see 
figure 4) in formulating the boundary condition at x = 0. Also we have 
applied these conditions, for u e > 0 and u e < o, to the approximation A > 0 
and A < 0. Before it becomes worth while to carry out refinements of this 
type, it is necessary to know to what extent the assumed boundary con- 
ditions really apply. Mixing of incoming air with air just issued from the pipe, 
precise position of boundary layer separation at the exit, may significantly 
affect the boundary condition at the exit. Before a more accurate analysis 
can be carried out, experimental investigation of the conditions at the exit 
is needed. 

Finally a difficulty must be noted occurring with the solution of (7. ii) 
on the analog computer. We are interested in periodic solutions because 
the whole analysis pertains to a quasi-steady state after a long time has 
elapsed. Equation (7.11) does not represent the transient motion in the 
pipe occurring when the piston is started from rest. 

These transients are of course described by the equation (3. i) but not by 
(7. ii) since this equation holds only for the quasi-steady state. In carrying 
out the integration of (7.11) with an analog computer solutions of the 
homogeneous equation will play a rSle because one has to start from a cer- 
tain initial value. These solutions have however nothing to do with transients 
of the physical phenomena in the pipe. How to get rid of these? 
Writing (7.11) as 

dA A I AI g l  ~ + g2 = cos (7.18) 

it follows that the solution of the homogeneous equation can implicitly be 
given by 

g2 d 'r t . (7.19) 

Because g2 > 0, there is no difficulty for gl > 0. However for gl < 0 
to 1 

(or ~ + ; < 0) (7.19) increases exponentially and the solution obtained 

with the analog computer is unstable. The difficulty is in the present case 
avoided by making use of the fact that in a quasi-steady state changing the 
sign of t means only changing the phase. Since it follows from (7.18)that 
changing the sign of t and that of gl has the same effect, a solution for 
gl < 0 can be obtained by first seeking the solution for I gll- Let this 
solution result in a pressure at the piston with phase r/2 + @ with respect 
to the piston displacement. Then the solution for gl has the same amplitude 
but phase r/2- ~] with respect to piston displacement. In this way the 
quasi-steady solution for gl < 0 was obtained. 

8. Comparison with experiments. 

Some experiments were carried out to verify the theory. From these we 
have selected for presentation here measurements with a pipe of L = 4.82 
m, 2R = 237 x 10-3m. During the measurements the atmospheric pressure 

Po was very nearly 105 ~--m2, the temperature 291,8~ The measurements 

were carried out with a piston displacement 5 = 2, 55 x 10 .3 m. From 
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these values we obtain with help of (i. 3)~ (3.8) and (7.12): ~ = 2, 3 x 
10 "2, o- = i, 310 ~Oo = iii, 3 sec "I 

At a number of values of ~o near ~o o the pressure at the piston was 
recorded. With the equipment used for these experiments, it was unfor- 
tunately not possible to measure the very small pressure oscillations at 
the mouth of the pipe and to verify the assumed conditions there. The phase 
was determined by recording also the path of the piston. A typical pressure 
recording is shown in figure 7. Since the displacement of the piston was 
recorded as positive when the piston moved towards the open end, in fact 
(cf. fig. i) - x piston is recorded. 

"-, f 

\ \  \ 

/ 
, \ 

,, \ \ .  /_].. 
"-,,. \ . , .~(j /  

-2. 

L/~eorg_ ex_/2_erirnent. )...-->..._<---- 
,"/ . I ' 1  "",, \ b a ~ k  o f  

[ / ~ / -  

/ 

w 1 
Figure 7: Pressure distuxbance, measured at  piston for ~ = 1.5~/ together with solution obtained with 

ca 
o 

analog computer.  

E q u a t i o n  ( 7 . 1 1 )  w a s ,  wi th  the p e r t i n e n t  v a l u e s  f o r  (y and  to o s o l v e d  on an  
a n a l o g  c o m p u t e r .  F o r  th i s  p u r p o s e  ( 7 . 1 1 )  was  b r o u g h t  in the f o r m  

dX I I g~-~-- + 0 .1  X X = c o s T ,  

g b e i n g  g i v e n  by  

g = ( -~ -+~ )  ( )�89 

101 too - 10 
In  the  e x a m p l e  o f  f i g u r e  7 - - =  - 1 . 5 7  o r  ( f r o m  6 . 5 )  ~ = 3 , 6  x 10 -2 

(Do too 

The  v a l u e  of g h e r e  is  - 0 . 5 2 .  
The  s o l u t i o n  f o r  g = 0 . 5 2 ,  o b t a i n e d  f r o m  the s o l u t i o n  f o r  g = 0 . 5 2  by  

the m e t h o d  d e s c r i b e d  in the  f o r e g o i n g  s e c t i o n ,  i s  s h o w n  a l s o  in f ig.  7. 
F o r  the p u r p o s e  of p r e s e n t a t i o n  the s c a l e s  of the m e a s u r e m e n t s  on the s c o p e  
and of the n u m e r i c a l  s o l u t i o n  a r e  b r o u g h t  in a g r e e m e n t .  

In f i g u r e  8 the a m p l i t u d e  of the p r e s s u r e  o s c i l l a t i o n  at  the p i s t o n  is  g i v e n  
as  p e r c e n t a g e  of Po bo th  f r o m  e x p e r i m e n t  and t h e o r y .  

In f i g u r e  9 the p h a s e  of the p r e s s u r e  o s c i l l a t i o n  with  r e s p e c t  to p i s t o n  
p a t h  i s  g i v e n ,  a s  o b t a i n e d  f r o m  t h e o r y  and m e a s u r e m e n t s .  

B e c a u s e  the p r e s s u r e  o s c i l l a t i o n  is  not  a p u r e  s i n e ,  the c o n c e p t  of p h a s e  
l ag  i s  not  u n a m b i g u o u s .  H e r e  it  i s  b a s e d  on the d i f f e r e n c e  J.n p h a s e  b e t w e e n  
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Figure 8: Ampli tude of pressure oscil lat ion at the piston as f u n c t i o n - - .  Theory and exper iment .  
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Figure 9: Phase of pressure oscil lat ion with respect to piston path. Theory and exper iment .  

the  z e r o ' s .  F r o m  f ig .  9 i t  f o l l o w s  t h a t  i n  the  m e a s u r e m e n t s  the  p h a s e  
d i f f e r e n c e  is  m o r e  n e a r  ~r/2 t h a n  i n  the  t h e o r y .  

(dl 
On the b a s i s  of ( 7 . 8 )  r e s o n a n c e  c o u l d  be e x p e c t e d  a t  - 0 . 6 5  o r  

(d o 

tO ( u s i n g  6 . 5 )  - -  = 0. 985.  T h e  m e a s u r e m e n t s  g i v e  a t  r e s o n a n c e  ( m a x i m u m  
% 
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p r e s s u r e  a m p l i t u d e  )--w = 0. 98, so  t h a t a g r e e m e n t  w i th  the  r e s o n a n c e  f r e q u e n c y  

g i v e n  by  R a y l e i g h  ( u s e d  i n  7 . 1 2 )  i s  m o s t  s a t i s f a c t o r y .  
Concerning the amplitude of oscillation, it follows that there is a difference 

between theory and experiment at and immediately near resonance. This 
0p fact, together with the singular behaviour at resonance of ~- for p - Po = 0, 

discussed in section 7, indicated that a more accurate account should be given 
of the conditions prevailing at the mouth of the pipe. While these conditions 
are not known exactly the present theory is able to predict the frequency 
and the order of magnitude of the resonance oscillations adequately. For 
many engineering purposes no more is needed. 

Finally something should be said about viscosity effects. These are in- 
directly taken into account of course in the formulation of the conditions 
at the mouth of the pipe. The viscosity effects as they are represented in 
the equation of motion, are neglected in the presented theory since they 
are of higher order in e. It may be however that the small phase shift due 
to the action of viscosity plays an inportant part in removing the singularity 
mentioned above. The pursuing of this point is left for future research. 
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